A Magician Looks at Gödel’s Proof

Raymond Smullyan

USA
Part I

An Incompleteness Theorem
An Incompleteness Theorem

We consider a mathematical system in which certain expressions are called **predicates**, and by a **sentence** is meant any expression of the form HX, where H is a predicate and X is any expression in the language of the system.
Intuition:

We might think of a predicate H as being the name of a property of expressions, and HX as a sentence asserting that X has the property named by H.
Some definitions

- The system has a negation symbol N, and for any sentence X, the expression NX is also a sentence called the **negation** of X.

- The system is called **consistent** iff no sentence and its negation are both provable.

- A sentence is called **undecidable** iff neither it nor its negation is provable.
Two conditions

The system obeys the following two conditions:

\(C_1 \) There is a predicate \(P \) (called a provability predicate) such that for any sentence \(X \), the sentence \(X \) is provable iff \(PX \) is provable.

\(C_2 \) There is a predicate \(R \) such that for any expression \(X \), the sentence \(RX \) is provable iff \(PXXX \) is provable.
An amazing consequence

From just these two conditions, something quite amazing follows:

Theorem G_0 *If the system is consistent, then there is an undecidable sentence.*

Moreover, assuming consistency, one can exhibit an undecidable sentence using any of the symbols $P, N, R.$
Problem 1: Exhibit such a sentence.

Solution: Assuming consistency, such a sentence is \(RNR \).

Proof: By condition \(C_2 \), for any expression \(X \), the sentence \(RX \) is provable iff \(PXX \) is provable, and by condition \(C_1 \), \(PX X \) is provable iff \(XX \) is provable.
A problem, and the solution

Therefore RX is provable iff XX is provable. Since this holds for every expression X, it holds taking X to be the expression NR, and so RNR is provable iff $N RNR$ is provable. Thus either RNR and its negation $N RNR$ are both provable, or neither is provable. By the assumption of consistency, they are not both provable, hence neither one is provable, and thus RNR is undecidable.
Part II

Omega consistency
Proving at stages

We next consider a system in which the provable sentences are proved at various stages (we can imagine a computer proving these sentences in a certain order). We are given predicates P, R, and infinitely many predicates $P_1, P_2, \ldots P_k, \ldots$ [As before, PX means that X is provable, and now P_kX means that X is provable at stage k].
Conditions

We are now given the following conditions:

\(G_1 \) If \(X \) is provable at stage \(k \), then \(P_k X \) is provable, and if \(X \) is not provable at stage \(k \), then \(\neg P_k X \) is provable.

\(G_2 \) If for some \(k \), the sentence \(P_k X \) is provable, then \(P X \) is provable.

\(G_3 \) [Same as \(C_2 \) of Part I] \(R X \) is provable iff \(P X X \) is provable.
Omega consistency

The system is called \textit{omega consistent} iff it is consistent and also it is the case that there is no sentence X such that PX is provable, and at the same time all the sentences $NP_1X, NP_2X, \cdots NP_kX, \cdots$ are provable.
Gödel’s theorem

Theorem G (After Gödel) If the system is omega consistent, then there is an undecidable sentence.

Problem 2: Assuming omega consistency, exhibit such a sentence (again using any of the symbols \(P, R \) and \(N \)).
A solution (But more interesting)

The sentence is the same as before — RNR — but the proof now is, I believe, more interesting. We already know that condition C_2 of Part I holds, and we will now see that omega consistency implies that condition C_1 also holds.
Well, even without the assumption of omega consistency, if X is provable, so is P_X, because if X is provable, it must be proved at same stage k, and hence $P_k X$ is provable (by G_1), and then $P X$ is provable (by G_2). Thus if X is provable, so is $P X$.
A solution (But more interesting)

Now for the converse: Suppose PX is provable. If X were not provable, then it would not be provable at any stage, hence by G_1, the sentences $NP_1X, NP_2X, \ldots, NP_kX \ldots$ would all be provable, and since PX is, the system would not be omega consistent.
Thus if the system is omega consistent, then the provability of PX implies the provability of X, and so then X is provable iff PX is provable, which is condition C_1 of Part I. The rest then follows as seen in Part I.
Remarks

In the systems studied by Gödel, predicates are not considered as names of properties of expressions, as I have done, but rather as properties of (natural) numbers. To each predicate H and each number n, is associated a sentence $H(n)$ to be thought of as asserting that n has the property denoted by H.

A Magician Looks at Gödel's Proof – p. 19
Remarks

Indeed I have found it convenient to associate to every expression X and number n, an expression $X(n)$ such that if X is a predicate, n is a sentence.

Now, Gödel assigned to each expression a number, subsequently called the Gödel number of the expression. Now, to get away from always referring to Gödel numbers, the following schema is quite useful.
For any expressions X and Y, I define XY to be $X(y)$, where y is the Gödel number of Y. Also I define XYZ to be $X(YZ)$. Now, using this meta notion, in the systems to which Gödel’s argument goes through, there really are predicates $P, R, P_1, P_2, \cdots P_k, \cdots$ satisfying conditions $G_1, G_2,$ and G_3!